
LLNL-PRES-635934
This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Recent Advances in the Mercury Monte Carlo
Particle Transport Code

M&C 2013
Sun Valley, Idaho
May 5-9, 2013

Lawrence Livermore National Laboratory LLNL-PRES-635934
2

§  Transports neutrons, photons, and light element (hydrogen and
helium) charged particles

§  Treats fixed source and criticality problems

§  Parallelized via domain replication and domain decomposition

Mercury is the next-generation general purpose
Monte Carlo particle transport code under
development at LLNL

§  Written in C++ with a python user interface

§  Runs efficiently on current generation massively
parallel computing platforms

Lawrence Livermore National Laboratory LLNL-PRES-635934
3

§  Physics
•  Nuclear resonance fluorescence capability
•  Probability of initiation capability based on probability of extinction

§  Computational Science
•  Parallel scaling of algorithms to millions of MPI processes
•  Threading capability

This talk overviews recent physics and
computational science advances in Mercury

We are improving the physics capabilities of Mercury while enabling
the code to run on emerging state-of-the-art computer platforms

Lawrence Livermore National Laboratory LLNL-PRES-635934
4

§  MEGa-rays (Mono-Energetic Gamma-rays) obtained by Compton
upscattering laser photons from high-energy electrons

§  Gamma-ray energy can be tuned to the known nuclear resonance
fluorescence (NRF) energies of a specific isotope
•  NRF: photon absorbed by nucleus that subsequently decays to

ground state through emission of one or more gamma rays with
energies characteristic of the isotope

•  à Use to interrogate samples for the presence of an isotope

§  Capability to model NRF reactions being added to Mercury to enable its
use in ongoing detector design efforts alongside the COG code
•  NRF reaction in addition to Rayleigh (Coherent) and Compton

(incoherent) scattering, photoelectric absorption, and pair production

§  The MCNPX code also has an NRF capability

An effort at LLNL is developing gamma-ray beams
whose energies are tunable and nearly mono-energetic

Nuclear Resonance Fluorescence

Lawrence Livermore National Laboratory LLNL-PRES-635934
5

§  Incident photon energy is at
NRF energy for 238U

§  Rayleigh, Compton,
photoelectric, and NRF
reactions are modeled
•  Source photons below

threshold energy for pair
production

§  Goal of test problem is to tally
energy spectrum of photons
backscattered from microdot

§  Modeled in Mercury and COG
using 108 MC particles

We compared the modeling of photon reactions in
Mercury and COG for a 238U microdot test problem

238U microdot

Tally backscattered photons

108 gammas
@ 680.1 keV

L = 1 µm

ρ = 10-3 g/cm3

Lawrence Livermore National Laboratory LLNL-PRES-635934
6

Mercury and COG backscattered spectra are generally
in excellent agreement

§  NRF emission lines in excellent agreement
§  Discrepancy in Rayleigh scattering due to more accurate form factor

treatment in COG

Lawrence Livermore National Laboratory LLNL-PRES-635934
7

§  Scalability: ability of a code to perform efficiently as the number of
parallel processes increases

§  Focusing on weak scaling è constant work per process
•  Examines parallel overhead and bottlenecks in the code

We are improving Mercury to scale to large numbers
(i.e. millions) of parallel processes

Parallel Scaling

Matt O’Brien

0

20

40

60

80

100

0 5000 10000

W
al

lc
lo

ck
 T

im
e

Number of Processors

Non-Scalable Example: Run
time proportional to the
number of processors

0
20
40
60
80

100

0 5000 10000
W

al
lc

lo
ck

 T
im

e

Number of Processors

Scalable Example: Run time
proportional to the logarithm of
the number of processors

Enabling scalability to millions of processes requires attention to the details of
algorithms and memory usage that may be safely ignored at smaller scales

Lawrence Livermore National Laboratory LLNL-PRES-635934
8

The parallel scalability of several Mercury
algorithms has recently been improved

Algorithm

Previous
Scaling

Improved
Scaling

Particle Sourcing O(Nproc) O(1)

Global Particle Find – Cartesian Domains O(Nproc
2) O((log Nproc) (log log Nproc))

Load Balancing – Replication O(Nproc
2) O(log Nproc)

Test for Done with Particle Communication O(Nproc
2) O(log Nproc)

§  Sourcing only process-local particles coupled with scalable global
particle find algorithm leads to scalable particle sourcing

§  Scalable load balancing algorithm considers processor-pairs
instead of global workload view
•  See paper/poster by M. J. O’Brien at Monday evening session

Lawrence Livermore National Laboratory LLNL-PRES-635934
9

§  HEU-MET-FAST-001: highly-enriched uranium
sphere, R = 8.7407 cm, ρ = 18.740 g/cm3

§  Weak scaling study performed on LLNL Sequoia
supercomputer
•  20-petaFLOP/s IBM computer with 16 PPC

A2 CPU cores per compute node, 4 hardware
threads per core, and 16 GB memory per
node

§  Weak scaling study
•  Pure MPI parallelism, 104 MC particles per

process
•  26 = 64 to 221 = 2,097,152 MPI processes
•  à Up to ~21 billion Monte Carlo particles

tracked for the 221 process case
§  Study uses domain replication and tests particle

sourcing and load balancing algorithms

We performed a weak scaling study using the
Godiva critical sphere benchmark problem

Lawrence Livermore National Laboratory LLNL-PRES-635934
10

Mercury particle tracking wallclock time scales linearly
with the log2 of the number of processors for Godiva

Results of initial scaling study demonstrate parallel scalability
to very large numbers of MPI processes

§  Tracking time varies
by less than 7% when
scaling from 64 to
2,097,152 processors
•  Would ideally like

constant weak
scaling tracking time

§  Work is ongoing to
improve scalability of
additional algorithms
in the code

Lawrence Livermore National Laboratory LLNL-PRES-635934
11

§  Algorithm required for domain-decomposed simulations

§  Previous algorithm stored Nproc×Nproc matrix of number of sent and
received messages à algorithm O(Nproc

2) and hence not scalable

§  Scalable algorithm based on Brunner, Brantley, “An efficient, robust,
domain-decomposed algorithm for particle Monte Carlo,” JCP (2009)
•  Algorithm is O(log(Nproc)): use non-blocking reduce and broadcast

operations concurrently as particles are tracking

§  Previous published results demonstrated good parallel scaling to ~8K
processors on infinite medium weak scaling problems

§  We have observed good parallel scaling on Sequoia to 218 = 262,144
MPI processes on infinite medium weak scaling problems
•  Simulations up to 221 = 2,097,152 MPI processes have also been

completed à observed some noise above 218 processes

We also implemented a scalable test for when
particle communication has been completed

Lawrence Livermore National Laboratory LLNL-PRES-635934
12

§  Mercury has traditionally used pure MPI to achieve parallelism
•  MPI used across compute nodes + on CPU cores of individual

nodes

§  OpenMP threads enable parallelism across the cores of each node

§  Simulations can now use a combination of MPI+OpenMP to
distribute work across the cores of each node

§  Each node may have one or more MPI processes, and each MPI
process may use one or more threads to access compute cores

§  Memory savings: Nuclear data stored once per MPI process instead
of once per CPU core
•  Expected to be important for new machines with larger number of

cores per node and lower memory available per node

The ability to use OpenMP threads has recently
been added to Mercury

Threading

Shawn Dawson

Lawrence Livermore National Laboratory LLNL-PRES-635934
13

An MPI+OpenMP simulation uses the CPU cores on a
node differently than a pure MPI simulation

Node
CPU CPU CPU CPU

Node
CPU CPU CPU CPU

Simulation
8 MPI

Processes

Node
CPU CPU CPU CPU

Node
CPU CPU CPU CPU

Simulation 2 MPI
Processes

4 Threads

Pure MPI

MPI+OpenMP

Lawrence Livermore National Laboratory LLNL-PRES-635934
14

§  Domain replication and domain decomposition distribute work
across MPI processes

§  OpenMP threading distributes the work of a single MPI process
across multiple CPU cores within a node

§  MCNP has MPI+OpenMP parallelism for the replication-only case

§  Coarse grain threading is achieved by creating a particle vault (list
of particles to be tracked) for each thread and distributing particles
evenly across vaults
•  A thread layer is required in many data structures to enable

multiple threads to operate independently without thread locks

§  Fine grain threading is also used in lower loop levels outside of the
particle processing loop

The OpenMP threading capability works with Mercury
domain replication and domain decomposition

Lawrence Livermore National Laboratory LLNL-PRES-635934
15

§  Godiva problem described previously
•  Continuous energy LLNL ENDL2009 nuclear data
•  107 MC particles per generation, k-eigenvalue

fractional convergence tolerance 2.5×10-4

•  Simulations give keff = 1.000188±0.00016 which
agrees with experimental value of 1.000±0.001 to
within statistics

We performed a strong scaling study using the
Godiva critical sphere benchmark problem

§  Study performed on LLNL RZMerl Linux cluster with 16 Intel Xeon
(Sandy Bridge) cores (2.6 GHz) and 32 GB of memory per node

§  Investigated particle tracking time and maximum node memory as a
function of number of threads per node used (varied from 2 to 16)

§  Strong scaling: fixed problem size (geometry and number of Monte
Carlo particles) and varied the number of parallel processes

Lawrence Livermore National Laboratory LLNL-PRES-635934
16

The efficiency of the threading implementation is
generally similar to MPI

§  Strong scaling excellent –
doubling processors
reduces tracking time in half

§  Tracking time generally
insensitive to number of
threads (to within ~1-2%)

§  Using 16 threads per node
(all cores on node) does
degrade efficiency

§  More opportunities for
threading exist in
initialization/finalization

Number MPI Processes Per Node /
Number Threads Per MPI Process

Threading implementation for particle tracking is essentially
as efficient as using MPI processes within a node

Lawrence Livermore National Laboratory LLNL-PRES-635934
17

The use of threads for parallelism can significantly
reduce memory usage

§  Strong scaling with fixed
total number of particles à
maximum node memory
decreases as the number of
processors increases

§  Nuclear data needs only be
stored once per MPI
process

§  Memory reduction per MPI
process elimination ~90-100
MB

Number MPI Processes Per Node /
Number Threads Per MPI Process

We anticipate that the memory reduction achieved by using threads
will be important for new machines with less memory per node

Lawrence Livermore National Laboratory LLNL-PRES-635934
18

§  Physics
•  Addition of initial NRF capability is aimed at enabling the

application of the code to ongoing detector design efforts

§  Computational Science
•  Goal: Enable Mercury to run efficiently on emerging state-of-the-

art computers with large numbers of processors and low memory
per processor

•  Significant improvements in the parallel scalability of various
algorithms

•  Enabling an OpenMP threading option

We have described recent physics and computational
science advances in the Mercury code

Conclusions

